chapter three

3.4 Stress

At any point Q in the body, the general stress tensor is

Three normal stresses

$\sigma_{x}, \sigma_{y}, \sigma_{z}$

Three shear stresses

$$
\tau_{x y}, \tau_{x z}, \tau_{y z}
$$

3D stresses

2D stresses (plane stress)

3.6 Mohr's Circle for Plane Stress

$\sum F_{x^{\prime}}=0: \sigma_{x^{\prime}} \Delta A-\sigma_{x}(\Delta A \cos \theta) \cos \theta-\tau_{x y}(\Delta A \cos \theta) \sin \theta$
$-\sigma_{y}(\Delta A \sin \theta) \sin \theta-\tau_{x y}(\Delta A \sin \theta) \cos \theta=0$
In same manner we find

$$
\begin{equation*}
\sigma_{x^{\prime}}=\sigma_{x} \cos ^{2} \theta+\sigma_{y} \sin ^{2} \theta+2 \tau_{x y} \sin \theta \cos \theta \tag{1}
\end{equation*}
$$

3.6 Mohr's Circle for Plane Stress cont.

$$
\begin{align*}
& \sigma_{x^{\prime}}=\sigma_{x} \cos ^{2} \theta+\sigma_{y} \sin ^{2} \theta+2 \tau_{x y} \sin \theta \cos \theta \tag{1}\\
& \sigma_{y^{\prime}}=\sigma_{x} \sin ^{2} \theta+\sigma_{y} \cos ^{2} \theta-2 \tau_{x y} \sin \theta \cos \theta \tag{2}\\
& \tau_{x^{\prime} y^{\prime}}=-\left(\sigma_{x}-\sigma_{y}\right) \sin \theta \cos \theta+\tau_{x y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \tag{3}
\end{align*}
$$

The equations can also be rewritten as:
$\sigma_{x^{\prime}}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta+\tau_{x y} \sin 2 \theta$
$\sigma_{y^{\prime}}=\frac{\sigma_{x}+\sigma_{y}}{2}-\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta-\tau_{x y} \sin 2 \theta$
$\tau_{x^{\prime} y^{\prime}}=-\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta+\tau_{x y} \cos 2 \theta$

The importance of such equations is that at a specific angle θ you have principal stresses and maximum shear.

3.6 Mohr's Circle for Plane Stress cont.

$$
\begin{aligned}
& \sigma_{\text {ver }}=\frac{\sigma_{x}+\sigma_{y}}{2} \\
& R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\left(\tau_{y y}\right)^{2}}
\end{aligned}
$$

| center $=\left(\sigma_{\text {ave }}, 0\right)$
 current state of stress
 $X\left(\sigma_{x},-\tau_{x y}\right)$
 $Y\left(\sigma_{y}, \tau_{x y}\right)$ |
| :--- | :--- |\quad| Principal stresses |
| :--- |
| $\sigma_{1,2}=\sigma_{\text {ave }} \pm R$ |
| Max. shear stress (2D) |
| $\tau= \pm R$ |

3.7 General Three-Dimensional Stress

$$
\begin{aligned}
\sigma^{3} & -\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) \sigma^{2}+\left(\sigma_{x} \sigma_{y}+\sigma_{x} \sigma_{z}+\sigma_{y} \sigma_{z}-\tau_{x y}^{2}-\tau_{y z}^{2}-\tau_{z x}^{2}\right) \sigma \\
& -\left(\sigma_{x} \sigma_{y} \sigma_{z}+2 \tau_{x y} \tau_{y z} \tau_{z x}-\sigma_{x} \tau_{y z}^{2}-\sigma_{y} \tau_{z x}^{2}-\sigma_{z} \tau_{x y}^{2}\right)=0
\end{aligned}
$$

Solve the third-degree polynomial to find three values for σ (principal stresses)

Arrange, such that

$$
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}
$$

The principal shear stresses are

$$
\tau_{1 / 2}=\frac{\sigma_{1}-\sigma_{2}}{2} \quad \tau_{2 / 3}=\frac{\sigma_{2}-\sigma_{3}}{2}
$$

$$
\begin{gathered}
\tau_{\max } \\
\tau_{1 / 3}=\frac{\sigma_{1}-\sigma_{3}}{2}
\end{gathered}
$$

3.8 Elastic Strain cont.

Hook's law

$\sigma=E \varepsilon \quad$ normal stresses
$\tau=G \gamma \quad$ shear stresses
$E=2 G(1+v)$
Multi-axial loading
$\epsilon_{x}=\frac{1}{E}\left[\sigma_{x}-\nu\left(\sigma_{y}+\sigma_{z}\right)\right]$
$\epsilon_{y}=\frac{1}{E}\left[\sigma_{y}-\nu\left(\sigma_{x}+\sigma_{z}\right)\right]$
$\epsilon_{z}=\frac{1}{E}\left[\sigma_{z}-\nu\left(\sigma_{x}+\sigma_{y}\right)\right]$

Possion's ratio
$v=-\frac{\text { Lateral strain }}{\text { Axial strain }}$

Recall that
$\delta=\frac{\mathbf{P} L}{A E}$
For multi-sections
$\delta=\sum_{i} \frac{\mathbf{P}_{i} L_{i}}{A_{i} E_{i}}$
For variable cross - section
$\delta=\int_{0}^{L} \frac{\mathbf{P}(x)}{A(x) E} d x$

3.10 Normal Stresses for Beams in Bending

$$
\sigma=\frac{\mathbf{M} c}{I}=\frac{\mathbf{M}}{I / c}=\frac{\mathbf{M}}{Z}
$$

Z is the section modulus

Second moment of area

$$
I_{x}=\frac{b h^{3}}{12} \quad I_{y}=\frac{b^{3} h}{12} \quad I_{x}=I_{y}=\frac{\pi D^{4}}{64}
$$

Example: Find maximum tensile and compressive stresses.

Solution :

$\bar{y}=\frac{A_{1} \bar{y}_{1}+A_{2} \bar{y}_{2}}{A_{1}+A_{2}}=38 \mathrm{~mm}$

Example: Find maximum tensile and compressive stresses.

$I_{1}=\frac{1}{12} \times 90 \times(20)^{3}+90 \times 20 \times(12)^{2} \mathrm{~mm}^{4}$
$I_{2}=\frac{1}{12} \times 30 \times(40)^{3}+30 \times 40 \times(18)^{2} \mathrm{~mm}^{4}$
$I=I_{1}+I_{2}=868 \times 10^{-9} \mathrm{~m}^{4}$

Example: Find $\sigma_{A}, \sigma_{B}, \sigma_{C}, \sigma_{D}$

$$
\begin{aligned}
& t=12 \mathrm{~mm}, A=4.224 \times 10^{-3} \mathrm{~m}^{2} \\
& I_{y}=\frac{1}{12} \times 0.125 \times(0.075)^{3}-\frac{1}{12} \times 0.101 \times(0.051)^{3}=3.278 \times 10^{-6} \\
& I_{z}=\frac{1}{12} \times 0.075 \times(0.125)^{3}-\frac{1}{12} \times 0.051 \times(0.101)^{3}=7.828 \times 10^{-6}
\end{aligned}
$$

$$
\sigma_{0}=\frac{\mathbf{F}}{A}=\frac{70 \times 10^{3}}{4.224 \times 10^{-3}}=16.57 \mathrm{MPa}
$$

$$
\sigma_{1}=\frac{\mathbf{M}_{\mathrm{y}} \cdot z_{\max }}{I_{y}}=\frac{0.525 \times 10^{3} \times 0.0375}{3.278 \times 10^{-6}}=6 \mathrm{MPa}
$$

$$
\begin{aligned}
& \sigma_{A}=16.57-6+20.96=31.53 \mathrm{MPa} \\
& \sigma_{B}=16.57-6-20.96=-10.39 \mathrm{MPa} \\
& \sigma_{C}=16.57+6+20.96=43.53 \mathrm{MPa} \\
& \sigma_{D}=16.57+6-20.96=1.61 \mathrm{MPa}
\end{aligned}
$$

$$
\sigma_{2}=\frac{\mathbf{M}_{\mathbf{z}} \cdot y_{\max }}{I_{z}}=\frac{2.625 \times 10^{3} \times 0.0625}{7.828 \times 10^{-6}}=20.96 \mathrm{MPa}
$$

3.11 Shear Stresses for Beams in Bending

(Transverse shear)

Beam Shape \quad Formula $\quad \tau_{\max }=\frac{3 V}{2 A}$

3.12 Torsion

$$
\tau=\frac{\mathbf{T} \rho}{J} \Longleftrightarrow \tau_{\max }=\frac{\mathbf{T} r}{J}
$$

$$
\begin{aligned}
& J=\frac{\pi d^{4}}{32} \\
& J=\frac{\pi\left(d_{o}^{4}-d_{i}^{4}\right)}{32}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma L=\rho \phi \\
& \tau=G \gamma
\end{aligned} \quad \square \phi=\frac{T L}{G J}
$$

$1.5^{\prime \prime}$ diameter solid shaft steel.
simply Supported -
pulley B of 4° din. pulley G^{\prime} of 8° dia.

Determine the locations X Magnitudes of the greatest tensile ll compressive, shear stresses.
$E=$
y

$$
\begin{aligned}
& \sum M_{y}=0, \\
& A_{y} \times 30-600 * 10=0 \Rightarrow A_{y}=200 \\
& \sum f_{y}=0, \longrightarrow D_{y}=400
\end{aligned}
$$

$$
B M \text { at } B=200 \cdot l_{2 f+i n}
$$

$B M$ at $C=4000 \mathrm{lbf} \mathrm{rin}$

point B

$$
\begin{gathered}
M_{\text {res }}=\sqrt{8000^{2}+2000^{2}}= \\
\\
\gamma 246.2
\end{gathered}
$$

point G

$$
M_{r e c}=\sqrt{4000^{2}+4000^{2}}=
$$

$$
5656.8
$$

Max. BM at point B y-z plane

$$
\beta=76^{\circ}
$$

Shear stress $\frac{T}{J}=\frac{\tau}{R} \Rightarrow T_{B}=(1000-200) * 2$

$$
=1600 \mathrm{mpf-in}
$$

$$
=T_{c} \text { (opposite) }
$$

$$
\tau=\frac{16(1600)}{\pi(1.5)^{3}}=2.414 K_{p s i}
$$

Bending stress

$$
\sigma=\frac{32 M}{\pi d^{3}}=\frac{32 \times 8246}{\pi(1.5)^{3}}=24.89 \mathrm{kpsi}
$$

Tension (point E)

$$
\begin{gathered}
\sigma_{x}=24.89, \sigma_{y}=0, \tau_{x,}=2.414 \\
\sigma_{x} \xlongequal[\tau_{n}]{\tau_{x}} \rightarrow \sigma_{x} \rightarrow x
\end{gathered}
$$

$$
\sigma_{x}=24.89 \quad \sigma_{y}=0, \gamma_{\alpha_{y}}=-2.414
$$

$$
\sigma_{\text {ave }}=12.44 \quad, R=12.67
$$

$$
\begin{aligned}
& \sigma_{1}=\sigma_{a v .}+R=25.11 \\
& \sigma_{2}=0 \\
& \sigma_{3}(N A) \quad \tau_{\max }=R=12.67
\end{aligned}
$$

